Table of Contents

1 **Executive Summary** 8

2 **Third-Generation Biofuels – Algae Biofuels** 13
 - 2.1 Overview 13
 - 2.2 Algae Biofuel Policy 14
 - 2.3 Siting and Growth 16
 - 2.3.1 Open Ponds 17
 - 2.3.2 Photo-bioreactors 18
 - 2.3.3 Heterotrophic (Fermentation) 20
 - List of Leading Companies and Their Growth Methods 21
 - 2.4 Harvesting, Drying, Dewatering 22
 - 2.5 Extraction 25
 - 2.6 Conversion Processes 26
 - 2.7 Algae Biofuel Industry Overview 27
 - 2.7.1 Algae Yields 29
 - 2.7.2 Opportunities and Constraints for Algae Biofuels 30
 - 2.8 Algae Biofuel Unit Economics 35
 - 2.8.1 Co-Products 35
 - 2.8.2 Costs 36
 - 2.9 Algae Biofuels Market Forecasts and Applications 44
 - 2.9.1 Global Production and Capacity Forecasts 2010-2022 45
 - 2.9.2 Algae Biofuel Production By Region 48
 - 2.9.3 Algae Market Segments 50

3 **Fourth-Generation Biofuels – Designer and Synthetic “Drop-In” Fuels** 52
 - 3.1 Overview and Policy Considerations 52
 - 3.2 Advanced Bio-Chemical Conversion Methods – Designer Microbial Organisms 53
 - 3.2.1 Advanced Bio-Chemical Ethanol Production 53
 - 3.2.2 Biobutanol 56
 - 3.2.3 Biochemical Drop-in Hydrocarbons 59
 - 3.3 Advanced Thermo-Chemical Conversion Methods 63
 - 3.3.1 Fischer-Tropsch, Gasification, and Pyrolysis 63
 - 3.3.1.1 Introduction 63
 - 3.3.1.2 Gasification 63
 - 3.3.1.3 Pyrolysis 70
 - 3.3.2 Hydroprocessing, Catalysts and Upgrading 73
 - 3.4 Market Forecasts and Unit Economics 79
 - 3.4.1 Fourth-Generation Bio-Chemical Production Economics and Market Forecasts 79
 - 3.4.2 Fourth-Generation Thermo-Chemical Production Economics and Market Forecasts 81

4 **Third- and Fourth-Generation Market and Industry Analysis** 85
 - 4.1 Global Liquid Transportation Market Overview 85
 - 4.2 Biofuels’ Capacity to Displace Petroleum 91
 - 4.2.1 First- and Second-Generation Biofuels – Ethanol and Biodiesel 91
 - 4.2.2 Third-Generation Algae Biofuels 95
 - 4.2.3 Fourth-Generation Biofuels 98
 - 4.2.4 First, Second, Third, and Fourth Generation Biofuel Amalgamations and Applications 101

5 **Advanced Biofuel Resource Guide** 104
 - 5.1 Advanced Biofuel Industry Associations 104
 - 5.2 Online Biofuel Resources 106
 - 5.3 Online Clean Technology Resources (with biofuel coverage) 107
5.4 Relevant Biofuel Books 108
5.5 Biofuel Magazines 109
5.6 Relevant Government and NGO Resources 110

6 APPENDIX 112
6.1 Next Generation Fuels 112
6.2 Next Generation Processes 113
6.3 Next Generation Feedstocks 114
6.4 VC Investment in Second, Third, and Fourth Generation Biofuels 115
6.5 Global VC Funding of Advanced Biofuels in 2009 117
6.6 Advanced Biofuel Investments by Selected Oil Majors 117

7 PROFILES 118
ALGENOL BIOFUELS 119
AMYRIS BIOTECHNOLOGIES 120
AURORA BIOFUELS 121
CHOREN INDUSTRIES 122
COBALT BIOFUELS 123
GEVO 124
JOULE BIOTECHNOLOGIES 125
LS9 INC. 126
ORIGIN OIL 128
PETRALGAE 129
QTEROS 130
Rentech 131
SAPPHIRE ENERGY 132
SOLAZYME 133
Solena Group 134
SOLIX BIOFUELS 135
Terrabon 136
UOP 137
VIRENT 138
LIST OF FIGURES

Figure 1-1: Global Algae Biofuel Production vs. Capacity in Billions of Gallons in 2022 9
Figure 1-2: Global Fourth-Generation Biofuel Production in BGY 2016-2022 10
Figure 1-3: Biofuel Displacement of Petroleum in 2010, 2015, 2022 11
Figure 1-4: Global Biofuel Wholesale Market Relative to Oil Prices 11
Figure 1-5: Companies discussed in this report 12
Figure 2-1: Experimental Photo-Bioreactor 14
Figure 2-2: 2010 Updated Renewable Fuel Standards per EISA 16
Figure 2-3: Seambiotic Open Pond System in Israel 17
Figure 2-4: Photo-bioreactor 18
Figure 2-5: Diagram of PBR Systems 19
Figure 2-6: Solazyme’s Algae Strains 20
Figure 2-7: Fermentation Vat 21
Figure 2-8: Algae Production Methods By Company 21
Figure 2-9: Algae Biomass in its Wet State 22
Figure 2-10: Example of Algal Centrifuge 23
Figure 2-11: Example of Algae Harvest Process 24
Figure 2-12: OriginOil’s Single-Step Extraction Process 25
Figure 2-13: Downstream Pathways for Converting Algae into Fuel 26
Figure 2-14: PetroSun’s 1100-Acre Algae Farm in Rio Hondo, TX 28
Figure 2-15: Calculation of Yields for Naturally Occurring Algae in the American Southwest 30
Figure 2-16: EPA Estimate of Algae Oil Yields in Photo-Bioreactor Growth System in Gallons per Acre per Year 30
Figure 2-17: Graphic Representation of Algae’s Capacity to Displace 100% of Petroleum for Transportation 31
Figure 2-18: Average Annual Sun Hours in United States - Contiguous 48 States 32
Figure 2-19: U.S. CO₂ Emission Sources Tons per Year (courtesy 32
Figure 2-20: U.S. CO₂ Emission Sources 1000 Tons in 2008 33
Figure 2-21: Water Consumption for Various Sectors in Southwest U.S. Compared to Evaporative Loss from Algae Biofuel via Open Pond Methods Million MGY 34
Figure 2-22: Algae Co-Product Opportunities at Various Price Points 35
Figure 2-23: Algae Lifecycle Steps 36
Figure 2-24: Aggregate Algae Biofuel Cost Comparison via Any Growth Method 38
Figure 2-25: Solix Biofuels PBR Total Levelized Production Cost in 2010 39
Figure 2-26: Three Scenarios for PBRs Target Cost $/Gal in 2010 and 2020 40
Figure 2-27: Solix Biofuels PBR Total Levelized Production Cost 20120 40
Figure 2-28: Three Cases of Algae PBR Cost Reduction Trajectories to 2020 in $/gal on an Equivalent Btu Basis with Retail Diesel Prices 41
Figure 2-29: Breakdown of Capital and Operating Costs of Producing a Gallon of Algae Biofuels via Open Pond in 2009 42
Figure 2-30: Three Scenarios for Algae Biofuels from Open Ponds Target Cost $/Gal in 2019 43
Figure 2-31: Three Cases of Algae PBR Cost Reduction Trajectories to 2020 in $/gal on an Equivalent Btu Basis with Retail Diesel Prices 44
Figure 2-32: Global Algae Biofuels Production Capacity 2010-2015 in Millions of Gallons 45
Figure 2-33: Global Algae Biofuels Production 2010-2015 in Millions of Gallons 46
Figure 2-34: Global Algae Biofuel Production vs. Capacity 2016-2022 in Millions of Gallons 47
Figure 2-35: Projected Regional Market-Shares of Algae Biofuel Industry 2015 and 2022 48
ABOUT THE AUTHOR

Joshua Kagan

Joshua Kagan is an analyst with cleantech hedge fund/VC firm Atlas Capital Investments and a Fellow with the Prometheus Institute for Sustainable Development, where he conducts research on the transportation sector. Joshua also serves as an advisor to the Carbon War Room, consults with the Gerson Lehman Group, and serves as an at-large analyst with Greentech Media. He holds a master’s degree from the London School of Economics and a bachelor’s degree from Wesleyan University in Middletown, Connecticut.
1 EXECUTIVE SUMMARY

In December 2009, we published Biofuels 2010: Spotting the Next Wave to provide a comprehensive market analysis of the global biofuels market. That report focused primarily on first- and second-generation ethanol and biodiesel. While first- and second-generation biofuels account for more than 99% of current global biofuel production, a number of important technologies are on the brink of commercialization that produce “drop-in” fuels with the same chemical characteristics of petroleum. In creating this report, Third and Fourth Generation Biofuels: Technologies, Markets, and Economics Through 2015, we wanted to examine the key players, technologies, and market applications that will drive the adoption of advanced biofuels.

First- and second-generation biofuels like ethanol and biodiesel have a number of inherent limitations that make them less than ideal as a long-term replacement for petroleum. The primary feedstocks for first-gen ethanol (corn and sugarcane) and biodiesel (rapeseed, soybeans, and palm) are all food-based crops that compete for scarce cropland, fresh water, and fertilizers. These fuels cannot be used in unmodified engines above small blends and are not applicable to the jet fuel market. While U.S. policy has mandated that increasing amounts of corn ethanol be blended into the domestic gasoline supply (15 BGY by 2015), the U.S. already appropriates 30% of its corn supply to displace about 6% of its gasoline consumption. While the coming years will see the commercialization of second-generation “cellulosic ethanol,” the lack of dedicated E85 fuel pumps and Flex-Fuel Vehicles (FFVs) as well as the encroachment upon the E10 “blend wall,” the limited energy density of ethanol, and the lack of ethanol-specific pipelines illustrate the challenges in depending upon ethanol as a long-term petroleum mitigation strategy.

Given that 2 billion people in “Chindia” are currently undergoing their industrial revolutions, combined with global population increases of 80M per year and increases in standards of living for non-OECD populations, we forecast global petroleum consumption to more than offset gains in corporate mileage efficiency and electrification of a portion of the transportation fleet. Combined with the fact that supplies of easily accessible “light sweet” crude are declining and oil prices are back above $80/bbl, the national security, environmental, and economic consequences of global dependence upon petroleum as a primary energy source is again at the forefront of policy discussions. The question of whether third- and fourth-generation biofuels are potential solutions is the basis of this inquiry. Some of the questions that this report attempts to answer include:

» What are the different types of advanced biofuels and which of them are relevant?
» What are the key technological pathways and what are their scale-up trajectories?
» Will advanced biofuels be price-competitive with petroleum without subsidies? If so, when?
» What are the short-, medium-, and long-term economics of algae, metabolically enhanced biofuel, and synthetic biofuels? Will any of these technologies ever displace significant volumes of liquid petroleum products?
This report is derived from conversations with more than 20 companies, as well as leading VCs, policymakers, and leading scientists in both academia and the private sector. Our interest in third-generation algae is driven by its superior yields (1,500-8,000 gal/acre/yr), ability to grow on marginal (non-crop) land, thus circumventing the “food vs. fuel debate,” capacity to thrive in brackish and/or saline water, and potential to recycle carbon from industrial power plants and remediate wastewater. Our discussions with leading algae companies like Solazyme, Solix, Sapphire Energy, Aurora, Algenol, Algae Systems, and Live Fuels suggest that the near-term economics will be driven by co-products and co-services while long-term cost improvements will occur as the steps of growth, harvesting, de-watering, drying, and oil extraction are consolidated. We believe that as oil prices increase, algae biofuels will achieve cost parity with petroleum in 2017/2018, resulting in 5.6 billion gallons of global production against 7.2 BGY of nameplate capacity in 2022.

While no commercial algae projects are expected for several years, there are a handful of fourth-generation facilities producing commercial volumes of “drop-in” fuel today.

Most thermo-chemical processes like biomass-to-liquids (BTL) or upgrading via “hydroprocessing” are extensions of commercial gasification or downstream petroleum refinery processes. While the logistics and costs of producing renewable diesel, gasoline, and jet fuel are currently more expensive and complex than refining petroleum, high diesel
taxes in Europe combined with cap-and-trade and continent-wide biofuel mandates are some of the reasons why European companies like ENI, Galp, Neste Oil, and Choren have commercial facilities that are either operating or will begin operating in the near future.

Fourth-generation biochemical methods largely involve the metabolic engineering of organisms to secrete biobutanol, ethanol, or drop-in fuels. Given that biochemical methods are extensions of fermentation, great opportunities exist for companies to leverage idle ethanol plants and drive down capital costs. Companies like Amyris, Gevo, and LS9 are utilizing this strategy and we expect commercial-scale projects to come online within the next two years.

FIGURE 1-2: GLOBAL FOURTH-GENERATION BIOFUEL PRODUCTION IN BGY 2016-2022

In 2010, we forecast global fourth-generation drop-in fuel production of 170 MGY, scaling to 19 billion gallons in 2022. One of the reasons why we are sanguine about the prospects for fourth-generation biofuels is that drop-in fuels are the only realistic short- to medium-term alternative for airplanes and long-haul diesel trucks. The battery constraints in electric vehicles suggest that such vehicles are only applicable to passenger and fleet vehicles. As such, the aggressive targets of the U.S. Air Force and other industry-wide consortia suggest that drop-in fuels represent the long-term future of biofuels.

By 2022, third- and fourth-generation biofuels should account for 28% of the global 88.5 billion gallons of biofuel production. Whereas biofuels currently displace 4.3% of global
gasoline and 1.5% of global diesel consumption, we forecast that by 2022, biofuels will replace almost 9% of the global jet fuel market, 8.4% of gasoline, and 7.4% of diesel.

If petroleum prices reach $250/bbl in 2022 --- as we believe is very likely --- 88 billion gallons of biofuel production will be a $567B industry. Combined, third- and fourth-generation biofuels will have a wholesale market value of $159B.
FIGURE 1-5: COMPANIES DISCUSSED IN THIS REPORT

<table>
<thead>
<tr>
<th>Company</th>
<th>Company</th>
<th>Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>A2BE Carbon Capture</td>
<td>Diversified Energy</td>
<td>OPX</td>
</tr>
<tr>
<td>Air New Zealand</td>
<td>DuPont</td>
<td>OriginOil</td>
</tr>
<tr>
<td>Algae Venture Systems</td>
<td>Dynamic Fuels LLC</td>
<td>PetroAlgae</td>
</tr>
<tr>
<td>Algenol</td>
<td>Dynamotive Energy</td>
<td>Petrobras</td>
</tr>
<tr>
<td>Altair</td>
<td>Elevance Renewable Sciences</td>
<td>Petrosun</td>
</tr>
<tr>
<td>Amyris</td>
<td>Eni S.p.A</td>
<td>Phyco Biosciences</td>
</tr>
<tr>
<td>Anellotech</td>
<td>Ensyn</td>
<td>Poet</td>
</tr>
<tr>
<td>Aquafloow Bionomics</td>
<td>Envergent</td>
<td>Poet Energy</td>
</tr>
<tr>
<td>Aurora Biofuels</td>
<td>Exxon/Mobile</td>
<td>Qteros</td>
</tr>
<tr>
<td>BARD</td>
<td>Flambeau River Biofuels</td>
<td>Range Fuels</td>
</tr>
<tr>
<td>Bell Bio-Energy</td>
<td>Galp</td>
<td>REI</td>
</tr>
<tr>
<td>Biofuel Systems</td>
<td>Gas Technology Institute</td>
<td>Rentech</td>
</tr>
<tr>
<td>Biofuels HK</td>
<td>General Atomics</td>
<td>SAIC</td>
</tr>
<tr>
<td>Bionavitas</td>
<td>Gevo</td>
<td>Sapphire</td>
</tr>
<tr>
<td>BioTfuel</td>
<td>Green Biologics</td>
<td>Seambiotic</td>
</tr>
<tr>
<td>Blue Marble</td>
<td>Haldor Topsoe</td>
<td>Shell</td>
</tr>
<tr>
<td>BlueFire Energy</td>
<td>ICM</td>
<td>Solazyme</td>
</tr>
<tr>
<td>Boeing</td>
<td>Inventure</td>
<td>Solena Group</td>
</tr>
<tr>
<td>BP</td>
<td>Japan Airlines</td>
<td>Solix</td>
</tr>
<tr>
<td>Butalco</td>
<td>Joule Biotechnologies</td>
<td>Stora Enso</td>
</tr>
<tr>
<td>Butamax</td>
<td>Kai Bioenergy</td>
<td>Swift Fuel</td>
</tr>
<tr>
<td>Caitlin</td>
<td>Kelco</td>
<td>Synthetic Genomics</td>
</tr>
<tr>
<td>Carbon Capture Corp.</td>
<td>Kent BioEnergy</td>
<td>Syntroleum</td>
</tr>
<tr>
<td>Cellena</td>
<td>KL Energy</td>
<td>Terrabon</td>
</tr>
<tr>
<td>Chemrec</td>
<td>KLM</td>
<td>Texas Clean Fuels</td>
</tr>
<tr>
<td>Choren</td>
<td>Kumho Petrochemical</td>
<td>Tyson Foods</td>
</tr>
<tr>
<td>ClearFuels</td>
<td>Live Fuels</td>
<td>UOP</td>
</tr>
<tr>
<td>Cobalt</td>
<td>LS9</td>
<td>Valcent</td>
</tr>
<tr>
<td>ConocoPhillips</td>
<td>Martek</td>
<td>Valero</td>
</tr>
<tr>
<td>Continental Airlines</td>
<td>Mascoma</td>
<td>Vercipia</td>
</tr>
<tr>
<td>Coskata</td>
<td>Neste Oil</td>
<td>XL Renewables</td>
</tr>
<tr>
<td>Cyanotech</td>
<td>NSE Biofuels</td>
<td>Zeachem</td>
</tr>
</tbody>
</table>

Source: GTM Research
CONTACT INFORMATION

Tate Ishimuro
Sales Associate
415-777-9917
ishimuro@greentechmedia.com